Macrophage galactose-type C-type lectins 1 and 2 (MGL1/2) are expressed on the surfaces of macrophages and immature dendritic cells. Despite the high similarity between the primary sequences of MGL1 and MGL2, they display different ligand specificities. MGL1 shows high affinity for the LewisX trisaccharide, whereas MGL2 shows affinity for N-acetylgalactosamine. To elucidate the structural basis for the ligand specificities of the MGLs, we performed NMR analyses of the MGL1-LewisX complex. To identify the LewisX binding site on MGL1, a saturation transfer experiment for the MGL1-LewisX complex where sugar-CH/CH2-selective saturation was applied was carried out. To obtain sugar moiety-specific information on the interface between MGL1 and the LewisX trisaccharide, saturation transfer experiments where each of galactose-H5-, fucose-CH3-, and N-acetylglucosamine-CH3-selective saturations was applied to the MGL1-LewisX complex were performed. Based on these results, we present a LewisX binding mode on MGL1 where the galactose moiety is bound to the primary sugar binding site, including Asp-94, Trp-96, and Asp-118, and the fucose moiety interacts with the secondary sugar binding site, including Ala-89 and Thr-111. Ala-89 and Thr-111 in MGL1 are replaced with arginine and serine in MGL2, respectively. The hydrophobic environment formed by a small side chain of Ala-89 and a methyl group of Thr-111 is a requisite for the accommodation of the fucose moiety of the LewisX trisaccharide within the sugar binding site of MGL1.
Read full abstract