Prosthetic technology has advanced with the development of powered prostheses to enhance joint function and movement in the absence of native anatomy. However, there are no powered solutions available for hip-level amputees, and most existing hip prostheses are mounted to the front of the prosthetic socket, thereby limiting range of motion. This research introduces a novel laterally mounted powered hip joint (LMPHJ) that augments user movement. The LMPHJ is mounted on the lateral side of the prosthetic socket, positioning the hip joint closer to the anatomical center of rotation while ensuring user safety and stability. The motor and electronics are located in the thigh area, maintaining a low profile while transmitting the required hip moment to the mechanical joint center of rotation. A prototype was designed and manufactured, and static testing was complete by modifying the loading conditions defined in the ISO 15032:2000 standard to failure test levels for a 100kg person, demonstrating the joint's ability to withstand everyday loading conditions. Functional testing was conducted using a prosthesis simulator that enabled able-bodied participants to successfully walk with the powered prosthesis on level ground. This validates the mechanical design for walking and indicates the LMPHJ is ready for evaluation in the next phase with hip disarticulation amputee participants.
Read full abstract