The classical estimation method for extreme quantiles of heavy-tailed distributions was presented by Weissman (J. Amer. Statist. Assoc. 73 (1978) 812–815) and makes use of the Hill estimator (Ann. Statist. 3 (1975) 1163–1174) for the positive extreme value index. This index estimator can be interpreted as an estimator of the slope in the Pareto quantile plot in case one considers regression lines passing through a fixed anchor point. In this Note we propose a new extreme quantile estimator based on an unconstrained least squares estimator of the index, introduced by Kratz and Resnick (Comm. Statist. Stochastic Models 12 (1996) 699–724) and Schultze and Steinebach (Statist. Decisions 14 (1996) 353–372) and we study its asymptotic behavior. To cite this article: A. Fils, A. Guillou, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
Read full abstract