PurposeLaser navigation without a reflector does not require setup of reflector markers at the scene and thus has the advantages of free path setting and flexible change. This technology has attracted wide attention in recent years and shows great potential in the field of automatic logistics, including map building and locating in real-time according to the environment. This paper aims to focus on the application of feature matching for map building.Design/methodology/approachFirst, an improved linear binary relation algorithm was proposed to calculate the local similarity of the feature line segments, and the matching degree matrix of feature line segments between two adjacent maps was established. Further, rough matching for the two maps was performed, and both the initial rotation matrix and the translation vector for the adjacent map matching were obtained. Then, to improve the rotation matrix, a region search optimization algorithm was proposed, which took the initial rotation matrix as the starting point and searched gradually along a lower error-of-objective function until the error sequence was nonmonotonic. Finally, the random-walk method was proposed to optimize the translation vector by iterating until the error-objective function reached the minimum.FindingsThe experimental results show that the final matching error was controlled within 10 mm after both rotation and translation optimization. Also, the algorithm of map matching and optimization proposed in this paper can realize accurately the feature matching of a laser navigation map and basically meet the real-time navigation and positioning requirements for an automated-guided robot.Originality/valueA linear binary relation algorithm was proposed, and the local similarity between line segments is calculated on the basis of the binary relation. The hill-climbing region search algorithm and the random-walk algorithm were proposed to optimize the rotation matrix and the translation vector, respectively. This algorithm has been applied to industrial production.
Read full abstract