In this paper, we investigate a regularized mean curvature flow starting from an invariant hypersurface in a Hilbert space equipped with an isometric and almost free action of a Hilbert Lie group whose orbits are minimal regularizable submanifolds. We prove that, if the initial invariant hypersurface satisfies a certain kind of horizontally convexity condition and some additional conditions, then it collapses to an orbit of the Hilbert Lie group action along the regularized mean curvature flow. In the final section, we state a vision for applying the study of the regularized mean curvature flow to the gauge theory.
Read full abstract