An efficient redox initiating system, ceric ammonium nitrate/nitric acid, has been employed for the first time to carry out photo-induced graft copolymerization of acrylonitrile (AN) onto sodium salt of partially carboxymethylated sodium alginate, having an average degree of substitution value to be 1.10. The photo-grafting reaction conditions for maximum grafting have been systematically optimized by varying the reaction variables such as reaction time, temperature, the concentration of acrylonitrile monomer, ceric ammonium nitrate, and nitric acid, as well as the amount of the backbone. The optimum reaction conditions are obtained with a reaction time of 4 h, reaction temperature of 30 °C, acrylonitrile monomer concentration of 0.152 mol/L, initiator concentration of 5 × 10-3 mol/L, nitric acid concentration of 0.20 mol/L, amount of backbone of 0.20 (dry basis) and the total volume of the reaction system of 150 mL. The highest percentage of grafting (%G) and grafting efficiency (%GE) achieved are 316.53% and 99.31%, respectively. The optimally prepared graft copolymer, sodium salt of partially carboxymethylated sodium alginate-g-polyacrylonitrile (%G = 316.53), has been hydrolyzed in an alkaline medium (0.7N NaOH, 90-95 °C for ~2.5 h) to obtain the superabsorbent hydrogel, H-Na-PCMSA-g-PAN. The chemical structure, thermal characteristics, and morphology of the products have also been studied.
Read full abstract