The dumping of bauxite tailings into Batata Lake, an Amazonian clear-water lake, generated high levels of turbidity and caused a serious decrease in phytoplankton densities, which could possibly be the result of a photosynthetic limitation due to light attenuation together with an increase in algal sinking due to the adhesion of clay particles. This study aimed to investigate the sinking process through the addition of different suspended clay concentrations in columns containing Batata lake water. Since no effect of the suspended clays on Batata Lake phytoplankton sinking was observed, it was then evaluated, under laboratory conditions, whether the low conductivity of the Batata Lake water could interfere with the algae-clay aggregation process. Cultures of two algal species known to be capable to aggregate to Batata Lake suspended clays in algal culture medium: Staurodesmus convergens and Phormidium amoenum, were added to both the low conductivity Batata Lake water (14 μS cm−1) and the high conductivity algal culture media (WC – 300 μS cm−1 and Z8 – 560 μS cm−1) together with Batata lake suspended clays. In both algal culture media and Batata lake water the two species had their sinking accelerated due to clay adhesion. It is thus suggested that the decrease in phytoplankton densities recorded in Batata Lake may not be related to an increase in phytoplankton loss rates due to algal-clay aggregation, but rather are a consequence of decreasing growth rates because of light attenuation.
Read full abstract