Microwave-assisted methods are facile synthetic routes for the synthesis of nanoparticles. Cu2O nanoaggregates (Cu2O NA) were synthesized using Bauhinia purpurea (B. purpurea) leaf extract via microwave method. The incorporation of Cu2O NA in β-cyclodextrin generated Cu2O-β-CD nanocomposite (Cu2O-β-CD NC). The structure and morphology of the Cu2O-β-CD NC were investigated using characterization techniques like Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The crystallines Cu2O NA and Cu2O-β-CD NC have size 30.65 and 19.73 nm, respectively. The Cu2O-β-CD NC revealed excellent catalytic activities for the reduction of nitro aromatic compounds in the presence of NaBH4. Gold electrode modified with Cu2O-β-CD NC is effective for the sensing levofloxacin. The electrocatalytic performance of the modified electrode was optimized, and the limit of detection was found to be 6.93 nM. The synergistic effect between the semiconductor Cu2O nanoaggregates and high adsorption capability of β-CD provided a better platform for the fast degradation of 4-nitrophenol and enhanced sensitivity for the determination of levofloxacin.
Read full abstract