The development of efficient photocatalysts to convert dilute CO2 from flue gas into high value-added products is a promising approach to achieving carbon neutrality. In this work, a dual-fluorinated Ni single atom photocatalyst is reported for the photoreduction of diluted CO2 to CO. Under a dilute CO2 (10%) atmosphere, TPB-SA2F-Ni achieves the highest reported CO yield (30344.4µmol g-1h-1) among heterogeneous catalytic systems with a CO selectivity of 98%. Kevin probe force microscopy and photoelectrochemical characterizations indicate that dual-fluorination strategy enhances photoexcited electron transfer between the photosensitizer and photocatalyst by optimizing the conjugated electronic structure. Pore size distribution and CO2 adsorption experiments show that the uniform microporous structure induced by the dual-F site further enhanced the ability of the Ni-N2O2 active site to capture CO2 molecules. Density functional theory calculations indicate that the high CO yield of TPB-SA2F-Ni stems from a lowered energy barrier for *COOH intermediate formation.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Articles published on High CO Yield
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
183 Search results
Sort by Recency