This paper presents the first multiobjective microarchitectural floorplanning algorithm for high-performance processors implemented in two-dimensional (2-D) and three-dimensional (3-D) ICs. The floorplanner takes a microarchitectural netlist and determines the dimension as well as the placement of the functional modules into single- or multiple-device layers while simultaneously achieving high performance and thermal reliability. The traditional design objectives such as area and wirelength are also considered. The 3-D floorplanning algorithm considers the following 3-D-specific issues: vertical overlap optimization and bonding-aware layer partitioning. The hybrid floorplanning approach combines linear programming and simulated annealing, which is shown to be very effective in obtaining high-quality solutions in a short runtime under multiobjective goals. This paper provides comprehensive experimental results on making tradeoffs among performance, thermal, area, and wirelength for both 2-D and 3-D ICs
Read full abstract