The application of high-temperature YBa2Cu3O7−δ (YBCO) superconducting material is a considerable prospect for the growing energy shortages. Here, SmBiO3 (SBO) films were deposited on (100)-orientated yttrium-stabilized zirconia (YSZ) simple crystal substrates via the chemical solution deposition (CSD) approach for coated conductors, and the effects of sintering oxygen partial pressure on SBO films were studied. The crystalline structures and surface morphologies of SBO films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscope (AFM). The optimized growth temperature, the intensity ratios of the SBO (200) peak to the SBO (111) peak, and the crystallinities of SBO films increased with the sintering oxygen partial pressure. The SEM and AFM images displayed a smooth and well-distributed surface in the argon atmosphere. The subsequent YBCO films with superconducting transition temperatures (Tc = 89.5 K, 90.2 K, and 86.2 K) and critical current densities (Jc = 0.88 MA/cm2, 1.69 MA/cm2, and 0.09 MA/cm2; 77 K, self-field) were deposited to further check the qualities of the SBO layer. These results indicated that sintering oxygen partial pressure had an effect on the epitaxial growth of the SBO buffer layer and YBCO superconducting properties. The experimental results may be a usable reference for the epitaxial growth of YBCO-coated conductors and other oxides.
Read full abstract