A non-intrusive optical technique was developed to provide time-resolved longitudinal and cross-sectional images of the liquid film in horizontal annular pipe flow of air and water, revealing the interfacial wave behavior. Quantitative information on the liquid film dynamics was extracted from the time-resolved images. The planar laser-induced fluorescence technique was utilized to allow for optical separation of the light emitted by the film from that scattered by the air–water interface. The visualization test section was fabricated from a tube presenting nearly the same refractive index as water, which allowed the visualization of the liquid film at regions very close to the pipe wall. Longitudinal images of the liquid film were captured using a high-frame-rate digital video camera synchronized with a high-repetition-rate laser. An image processing algorithm was developed to automatically detect the position of the air–water interface in each image frame. The thickness of the liquid film was measured at two axial stations in each processed image frame, providing time history records of the film thickness at two different positions. Wave frequency information was obtained by analyzing the time-dependent signals of film thickness for each of the two axial positions recorded. Wave velocities were measured by cross-correlating the amplitude signals from the two axial positions. For the film cross-section observations, two high-speed digital video cameras were used in a stereoscopic arrangement. Comparisons with results from different techniques available in literature indicate that the technique developed presents equivalent accuracy in measuring the liquid film properties. Time-resolved images of longitudinal and cross-section views of the film were recorded, which constitute valuable information provided by the technique implemented.
Read full abstract