Quantitative nuclear magnetic resonance (qNMR) spectroscopy could potentially be used for environmental microplastic analyses, provided the challenges posed by mixed polymer samples with varying concentrations and overlapping signals are understood. This study investigates the feasibility of qNMR as a reliable and cost-efficient method for quantifying synthetic polymers in mixtures of low and varying concentrations, addressing key challenges and limitations. Polymer mixtures were analysed using deuterated chloroform (CDCl3) and deuterated tetrahydrofuran (THF-d8) as solvents, with polystyrene (PS), polybutadiene-cis (PB), polyisoprene-cis (PI), polyvinyl chloride (PVC), polyurethane (PU), and polylactic acid (PLA) as selected polymers. Mixtures contained either low and high concentrations of each polymer or equal concentrations of all six polymers. Polymer concentrations were measured using the internal standard method. The method showed low relative errors for low concentrations of PS in CDCl3 and PVC in THF-d8, with values of -5% and 0%, respectively, while PB and PI in CDCl3 show relative errors of +5% and -3%, respectively. We observe significant linearity between nominal and measured concentrations with R 2 values ranging from 0.9655 to 0.9981, except for PU, which had high relative errors and poor linearity (R 2 = 0.9548). Moreover, simultaneous quantification of six polymers in THF-d8 proves effective at intermediate concentrations. However, overlapping proton signals are observed, causing high-concentration polymers to mask low-concentration ones. While this study demonstrates low limit of quantification (LOQ) and advances in simultaneous polymer quantification, further research is needed to improve qNMR accuracy for mixed polymer samples and environmentally relevant concentrations.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
130 Articles
Published in last 50 years
Articles published on High Relative Errors
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
129 Search results
Sort by Recency