Climate change increasingly influences the loss of biodiversity, especially in ectothermic organisms, which depend on environmental temperatures to obtain heat and regulate their life cycle. Studies that aim to understand the impact of temperature variation are important to better understand the possible impacts generated on the homeostasis of ectothermic organisms. Our objective was to characterize the responses of juvenile Liolaemus arambarensis lizards to abrupt changes in temperature, quantifying markers of body condition, intermediary and hormonal metabolism and oxidative balance. We collected 45 juvenile individuals of L. arambarensis (winter: 20 and summer: 25) in Barra do Ribeiro, Brazil. We transported the animals to the laboratory, where they were acclimatized for five days at a temperature of 20 °C, then divided and exposed to temperatures of 10 °C, 20 °C, 30 °C and 40 °C for 24 h. After exposure, the animals were euthanized and the brain, caudal muscle, thigh, and liver tissues were extracted for quantification of biomarkers of metabolism (glycogen and total proteins) and oxidative balance (acetylcholinesterase, superoxide dismutase, catalase, glutathione-S-transferase and lipoperoxidation) and plasma for corticosterone quantification. The results show that L. arambarensis is susceptible to sudden temperature variations, where higher temperatures caused greater activity of antioxidant enzymes, increased lipoperoxidation and higher plasma levels of corticosterone in animals eliminated in winter. The present study demonstrated that abrupt changes in temperature could significantly modify the homeostatic mechanisms of animals, which could lead to oxidative stress and a potential trade-off between survival and growth/reproduction. In this context, the organism mobilizes energy resources for survival, with possible damage to growth and reproduction. Demonstrate that a change in temperature can be a potential factor in extinction for a species given the profile of global climate change.
Read full abstract