The microwave dielectric properties of (1-x)Mg <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1.8</sub> Ti <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1.1</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> -xCaTiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> ceramics prepared by the mixed oxide route have been investigated. Spinel-structured Mg <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1.8</sub> Ti <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1.1</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> , ilmenite-structured MgTiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> and perovskite-structured CaTiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> were coexisted and the three-phases system was confined by X-ray diffraction patterns, EDX analysis and it also leads to near-zero τf. The microstructures of the ceramics were characterized by SEM. The microwave dielectric properties of the ceramics can be effectively controlled by varying the x value. For practical applications, a fine combination of microwave dielectric properties (ε <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">r</sub> ~ 19.61, Q×f~ 72,700 GHz at 9.03 GHz, τ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</sub> ~ -3.7 ppm/°C) was achieved for 0.91Mg <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1.8</sub> Ti <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1.1</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> -0.09CaTiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> ceramics sintered at 1330°C for 4 h, which makes it is a very promising candidate material for applications in dielectric resonator antenna. A new triple-band dielectric resonator antenna fed by a coplanar waveguide is presented. The proposed antenna, composed of a high permittivity dielectric resonator and printed on FR4 substrate, is fed by a 50 Ω coplanar waveguide transmission line. In order to achieve wideband applications, the antenna with two parasitic inverted-L strip is demonstrated to generate two resonant frequencies covering 3.5 and 5.2 GHz. The measured results show that the antenna covers the frequency bands 2.30-2.72, 3.45-3.61, and 5.05-6.23 GHz with less than -10 dB of S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> . The frequency response of the simulation results shows good agreement with the measured data. Good antenna gain, radiation efficiency and radiation patterns of the proposed antenna have also been observed across the operation band. Details of the proposed antenna design and experimental results are presented and discussed.
Read full abstract