In the present work, we testify a strategy to achieve high-performance ZnO thin film transistors (TFTs) on a flexible PET substrate at a maximum process temperature no more than 100 °C. Interestingly, the ZnO TFTs exhibit superior electrical properties, including a field-effect mobility of 14.32 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> V <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> s <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> , a sub-threshold swing of 0.21 V/decade, and an on-to-off current ratio of 3.03 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">7</sup> . Also, ideal uniformity, hysteresis property, contact resistance, and stability are achieved. Threshold voltage shift (ΔV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">TH</sub> ) under positive and negative bias stress are 0.17 and -0.18 V, respectively. Moreover, the ZnO TFTs manifest good mechanical performance at a bending radius of 10 mm. We expect that our findings propel practical application of the oxide TFTs in flexible electronics.
Read full abstract