The corrosion of steel construction in marine environments faces severe corrosion threats, and coatings based on nanofillers are an effective strategy for steel corrosion protection. However, the related studies of the anti-corrosion coatings based on quantum dots are still poor. In this work, CuS and ZnS quantum dots (QD) were initially synthesized, and epoxy resin (EP) coatings containing QD with ratios of 0.05 wt%, 0.1 wt%, 0.2 wt%, and 0.5 wt% were successfully prepared subsequently. Surface analysis, electrochemical measurements, salt spray tests, and mechanical tensile tests were performed to characterize the prepared quantum dots and study the anti-corrosion behavior and mechanism of the prepared coatings. Results indicated that the prepared CuS and ZnS quantum dots have small sizes with values of 13.8 and 8.9 nm, respectively. Compared to the pure EP coating, QD-EP coatings have a higher mechanical strength and toughness which is conducive to improving the coatings’ corrosion resistance and service life. The impedance values of all the QD-EP coatings increase by more than three orders of magnitude in contrast to pure EP coating after 60 d of testing. Furthermore, the prepared QD-EP coatings possess a long-term anti-corrosion property.
Read full abstract