Simulation studies are presented that probe the possibility of using high-field (> 100 kV/cm) , short-duration ( approximately 50 ns) electrical pulses for nonthermal and reversible cessation of biological electrical signaling pathways. This would have obvious applications in neurophysiology, clinical research, neuromuscular stimulation therapies, and even nonlethal bioweapons development. The concept is based on the creation of a sufficiently high density of pores on the nerve membrane by an electric pulse. This modulates membrane conductance and presents an effective "electrical short" to an incident voltage wave traveling across a nerve. Net blocking of action potential propagation can then result. A continuum approach based on the Smoluchowski equation is used to treat electroporation. This is self-consistently coupled with a distributed circuit representation of the nerve dynamics. Our results indicate that poration at a single neural segment would be sufficient to produce an observable, yet reversible, effect.
Read full abstract