This review compares adult locomotor activity rhythms and photoperiodic induction of diapause in 3 common species of blow fly, Calliphora vicina, Lucilia sericata, and Protophormia terraenovae. Activity rhythms were broadly similar in all 3 species, although P. terraenovae is much less sensitive to constant light inducing arrhythmicity. Photoperiodic induction of diapause, on the other hand, varies more widely between species. C. vicina and L. sericata overwinter in a larval diapause induced by autumnal short days (long nights) acting both maternally and directly upon the larvae. P. terraenovae, on the other hand, shows an adult (reproductive) diapause induced by short daylength and low temperature experienced by the larvae. In the Nanda-Hamner protocol, C. vicina shows 3 clear peaks of high diapause incidence in cycle lengths close to 24, 48, and 72 h, without dampening and therefore suggesting a photoperiodic mechanism based on a self-sustained circadian oscillator acting in a clock of the external coincidence type. Entrainment of the locomotor activity rhythm to extended Nanda-Hamner photocycles, as well as to LD cycles close to the limits of the primary range of entrainment, demonstrates that overt circadian rhythmicity may act as ‘hands’ of the otherwise covert photoperiodic system, as suggested by Bünning, nearly 8 decades ago. In 24 h LD cycles, both locomotor activity rhythms and the photoperiodic oscillator are set to constant phase (CT 12) at light-off, so that the photoperiodic clock measures changes in nightlength by the coincidence (or not) of dawn light with a ‘photoinducible phase’ late in the subjective night (at about CT 21.5 h) as photoperiod changes with the seasons. Apparent differences between quantitative and qualitative photoperiodic responses are discussed.
Read full abstract