Water scarcity and imbalances in irrigation and drainage are the main factors leading to soil salinization in arid areas. There is a recognized need for effective drainage measures to prevent and improve saline−alkali land. The principal objective of this project was to investigate the effects of drainage measures on soil desalination and farmland drainage in the process of improving saline–alkali soils; these measures included subsurface pipe drainage (SPD) and open ditch drainage (ODD). The results of the tests, conducted over two years, revealed that the soil desalination rate in the SPD test area was between 25.8% and 35.2%, the cotton emergence rate was 36.7%, and a 3.8 t hm−2 seed cotton yield could be obtained. The soil electrolytic conductivity (EC) decreased step by step over time, and the average annual decrease reached 10 dS m−1. The degree of soil salinization was reduced from a moderately saline soil level (8−15 dS m−1) to a weakly saline soil level (4–8 dS m−1). Thus, the phased goal of improving saline–alkali land was achieved. The soil desalination rate in the ODD test area was only 1/10 of the SPD area; high soil EC (9−12 dS m−1) and groundwater level (2–3 m) were the most limiting factors affecting cotton growth in the ODD test area. The current results show that the critical depth of groundwater level affecting farmland secondary salinization is 4 m. In order to improve the salt discharge standard, SPD technology should be used on the basis of ODD. For salt that has accumulated in the soil for a long time, the technical mode of drip irrigation and leaching, followed by SPD drainage, in combination with the current irrigation system can achieve the goal of sustainable agriculture development.
Read full abstract