Designing in-plane supercapacitors with high electrode materials selectivity is an indispensable approach to improve electrochemical performance. In this work, a facile template method was employed to fabricate in-plane supercapacitors. This template method could select any electrochemical active materials as electrode materials of in-plane supercapacitors. Hence, a high electrochemical performance material Mn–Co LDO-2S with optimized metal-sulfur bonds proportion and abundant sulfur vacancies was employed as electrode material of symmetrical in-plane supercapacitor (SPS). SPS exhibits excellent electrochemical performance finally, and has considerable area energy density 55.0 μWh cm−2 with an area power density of 0.7 mW cm−2. As a result, introducing sulfur atoms and sulfur vacancies are efficient approaches to improve electrode materials’ electrochemical performance, and template method that proposed in this work is a promising approach to widen selectivity of in-plane supercapacitors’ electrode materials.
Read full abstract