The development of low-cost and high-performance electrocatalysts for simultaneously boosting the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) is highly crucial but still challenging. Herein, a facile one-step solid-phase polymerization and confined pyrolysis strategy is developed for scalable synthesis of a FexP/Fe3C-based (x = 1, 2) heterojunction with controllable iron phosphide crystal phases. By effective heterojunction interface regulation, the strong synergic effect between FeP/Fe3C and N- and P-codoped carbon (NPC) modified the electronic structure, resulting in an excellent electrocatalytic performance for the HER, OER, and ORR synchronously. Typically, the FeP/Fe3C@NPC catalyst exhibits efficient HER activity with a low overpotential of 10 mA cm–2 for the HER (97 mV) and OER (440 mV) and a high half-wave potential of 0.87 V for the ORR, as well as excellent stability in alkaline media. Theoretical calculations demonstrated that Fe3C can promote the activation of water molecules, while FeP is beneficial to the removal of H2 and the FeP/Fe3C heterojunction can facilitate both Volmer and Heyrovsky steps in the HER process simultaneously. Moreover, FeP has a stronger inhibitory effect on OH adsorption, revealing that the FeP/Fe3C heterojunction also shows a better promoting effect for both the OER and ORR, respectively.
Read full abstract