Readers are able to begin processing upcoming words before directly fixating them, and in some cases skip words altogether (i.e., never fixated). However, the exact mechanisms and recognition thresholds underlying skipping decisions are not entirely clear. In the current study, we test whether skipping decisions reflect instances of more extensive lexical processing by recording neural language processing (via electroencephalography; EEG) and eye movements simultaneously, and we split trials based on target word-skipping behavior. To test lexical processing of the words, we manipulated the orthographic and phonological relationship between upcoming preview words and a semantically correct (and in some cases, expected) target word using the gaze-contingent display change paradigm. We also manipulated the constraint of the sentences to investigate the extent to which the identification of sublexical features of words depends on a reader's expectations. We extracted fixation-related brain potentials (FRPs) during the fixation on the preceding word (i.e., in response to parafoveal viewing of the manipulated previews). We found that word skipping is associated with larger neural responses (i.e., N400 amplitudes) to semantically incongruous words that did not share a phonological representation with the correct word, and this effect was only observed in high-constraint sentences. These findings suggest that word skipping can be reflective of more extensive linguistic processing, but in the absence of expectations, word skipping may occur based on less fine-grained linguistic processing and be more reflective of identification of plausible or expected sublexical features rather than higher-level lexical processing (e.g., semantic access).
Read full abstract