Abstract Azimuthal variations in HI velocity dispersion do not correlate with variations in the star formation rate per unit area, SFR/A, suggesting that local star formation does not increase HI turbulence significantly. These variations are determined for each pixel in HI and FUV maps of THINGS and LITTLE THINGS galaxies by subtracting the average radial profiles from the measured quantities. The kinetic energy density and HI surface density increase slightly with SFR/A, suggesting that feedback goes into pushing the local dense gas around without increasing the velocity dispersion. We suggest that star formation feedback does not promote large-scale stability against gravitational forces through turbulence regulation, and that gravitational energy from recurrent instabilities drives turbulence on galactic scales.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
64 Articles
Published in last 50 years
Articles published on HI Surface
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
67 Search results
Sort by Recency