Unicellular dinoflagellate algae are among the best examples of organisms that exhibit biological clocks. This study examined the effect of light regime on rhythmicity of motility in the symbiotic dinoflagellate Symbiodinium sp., freshly isolated from the soft coral Heteroxenia fuscescens (Ehrenberg). Freshly isolated algal cells, placed under a 12-h L:12-h D cycle, exhibited motility with a diel rhythm. This motility occurred only during the period of illumination and lasted 8–9 h, with a peak at 2.5–4 h after lights on. Algal cells placed in an inverted light regime inverted their motility pattern. The response to the L/D regime was very precise, and even a 1-h shift backward or forward affected initiation of motility and time of its maximal peak. When placed in either constant light or dark, algal motility ceased until the L/D cycle was restored. These findings suggest that the rhythm is entrained by light cues and is not due to an endogenous circadian rhythm. Further, we provide evidence that the presence of juvenile hosts does not affect the algal motility pattern. These results offer the first evidence for the lack of impact by the host on rhythmicity of motility of free-living algal cells. The motility pattern found in freshly isolated algae may indicate the presence of light-induced diel rhythmicity in yet-to-be described free-living Symbiodinium.
Read full abstract