Experimental investigations of ion tracks and sputtering phenomena with energetic heavy projectiles in the electronic energy loss regime are re-examined in metallic and insulating materials. An overview of track data such as the velocity dependence of the track size and the critical electronic energy loss for track formation is presented. Different physical characterizations of the material transformation are listed in order to deduce a track size which is independent of the observations. It will point out the differences of damage creation by electronic energy loss compared to nuclear energy loss. In the second part, we present a theoretical description of track formation based on the inelastic thermal spike model. This thermodynamic approach combines the initial size of the energy deposition with the subsequent diffusion process in the electronic and lattice subsystems of the target. The track size, resulting from the quench of a molten phase, is determined by the energy density deposited on the atoms around the ion path governed by the electron–phonon strength. Finally, we discuss the general validity of this model in metallic materials and its suitability to describe track formation in amorphizable and non-amorphizable insulators.
Read full abstract