We present measurements of the specific heat, the electrical resistivity, the Hall effect, and the magnetic susceptibility of CeAuAl3, a new heavy-electron compound that crystallizes in an ordered derivative of the tetragonal BaAl4-type structure. For comparison we have also done some of these measurements on the isostructural non-magnetic reference compound LaAuAl3, which appears to be a simple metal. Below T N = 1.32K, CeAuAl3 orders antiferromagnetically and below 1K, we encounter Fermi liquid behaviour with considerably enhanced effective masses, i.e., a quadratic temperature dependence of the resistivity with a large prefactor and a sizable linear-in-T contribution to the specific heat. This linear-in-T contribution increases by more than a factor 50 from its value at T ≫ T N to its value at T ≫ T N. Consequently CeAuAl3 develops a heavy-electron ground state, coexisting with antiferromagnetic order. The small energy scales involved in the problem make CeAuAl3 a good candidate for tuning it, by varying external parameters, towards a quantum critical point. At high temperatures we observe local moment behaviour. From the temperature dependence of the magnetic susceptibility and the specific heat we have derived the crystalline-electric-field-split level scheme of the Ce3+ J = 5/2 multiplet. Distinct features in the electrical resistivity provide additional evidence for this level splitting.
Read full abstract