The high cost of CAD/CAM systems and materials is a severe economic burden. Therefore, repair of CAD/CAM PMMA, selecting appropriate repair materials, and surface modifications are clinically important. This study aims to evaluate the shear bond strength of PMMA repair materials after various surface treatments on CAD/CAM PMMA denture base material. For this purpose, a total of 480 CAD/CAM PMMA denture base test specimens were manufactured. Then all test specimens were divided into 6 groups, and different surface treatments were applied. Group A: sandblasting, Group B: 4% hydro fluoric acid, Group C: tungsten carbide bur, Group D: dichloromethane + methyl methacrylate mixture, Group E: dichloromethane and methyl methacrylate, Group F: no surface treatment. Each group is then divided into 4 different subcategories; repair processes were performed using; heat-cured acrylic resin (n:20), auto-polymerized acrylic resin (n:20), gingiva composite (n:20), and CAD/CAM PMMA tooth material (n:20). After repairs, thermal aging was applied to half of the test specimens in each subcategory. The shear bond strength value was measured with a universal test device. Sandblasting group showed the highest surface roughness value in all test specimens (p < 0.001). Heat-cured acrylic resin with sandblasting exhibited the highest bond strength, while the untreated gingiva composite resin exhibited the lowest value. Thermal aging decreased bond strength in all repair materials (p < 0.001). Among the surface treatment groups, sandblasting with Al2O3 particles exhibited the highest surface roughness value and repair bond strength. The application of organic solvents to the surface increased the surface roughness and repair bond strength. Applying dichloromethane and methyl methacrylate monomer separately is more effective than applying it as a mixture. The ideal bonding among repair materials was obtained with heat-cured acrylic resin.
Read full abstract