Surgery triggers a systemic inflammatory response that ultimately impacts the brain and associates with long-term cognitive impairment. Adequate regulation of this immune surge is pivotal for a successful surgical recovery. We explored the temporal immune response in a surgical cohort and its associations with neuroimmune regulatory pathways and cognition, in keeping with the growing body of evidence pointing towards the brain as a regulator of peripheral inflammation. Brain-to-immune communication acts through cellular, humoral and neural pathways. In this context, the vagal nerve and the cholinergic anti-inflammatory pathway (CAP) have been shown to modify peripheral immune cell activity in both acute and chronic inflammatory conditions. However, the relevance of neuroimmune regulatory mechanisms following a surgical trauma is not yet elucidated. Twenty-five male patients undergoing elective laparoscopic abdominal surgery were included in this observational prospective study. Serial blood samples with extensive immune characterization, assessments of heart rate variability (HRV) and cognitive tests were performed before surgery and continuing up to 6 months post-surgery. Temporal immune responses revealed biphasic reaction patterns with most pronounced changes at 5 hours after skin incision and 14 days following surgery. Estimations of cardiac vagal nerve activity through HRV recordings revealed great individual variations depending on the pre-operative HRV baseline. A principal component analysis displayed distinct differences in systemic inflammatory biomarker trajectories primarily based on pre-operative HRV, with potiential consequences for long-term surgical outcomes. In conclusion, individual pre-operative HRV generates differential response patterns that associate with distinct inflammatory trajectories following surgery. Long-term surgical outcomes need to be examined further in larger studies with mixed gender cohorts.
Read full abstract