To provide deeper immersion for the user in the virtual environments, both force and torque feedbacks are required rather than the mere use of visual and auditory ones. In this paper, we develop a novel propeller-based Ungrounded Handheld Haptic Device (UHHD) that delivers both force and torque feedbacks in one device to help the user experience a realistic sensation of immersion in a three-dimensional (3D) space. The proposed UHHD uses only a pair of propellers and a set of sliders to continuously generate the desired force and torque feedbacks up to 15N and 1N.m in magnitude in less than 370ms, respectively. The produced force and torque feedbacks are oriented in a desired direction using a gimbal mechanism where the propellers are mounted inside in such a way that a simple structure is obtained. These features facilitate the control of the proposed UHHD and enhance its practicality in various applications. To prove the capability of the system, we model it and elaborate on the force and torque analyses. Next, we develop a robust parallel force/position controller to tackle the structured and unstructured uncertainties. Finally, a measurement setup is manufactured to experimentally evaluate the performance of the UHHD and the controller. The implementation of the controller on the developed UHHD prototype shows that a satisfactory control performance is achievable in terms of offering the desired force and torque feedbacks.
Read full abstract