The mangroves' aboveground biomass significantly contributes to the global carbon cycle or economic and ecological values. This makes knowledge about the spatial extent of the mangroves indispensable for policymakers. The sequence of mangroves’ condition range also requires remote sensing data to update the geographical information and synthesize carbon stock in Bengkulu. Therefore, this study aims to create a spatial distrribution of mangroves and evaluate their carbon stock in Bengkulu City using Sentinel-2 imagery. The semi-empirical method uses Sentinel-2 imagery through NDVI to appraise and picture the mangroves' aboveground carbon stock. An allometric equation was used to compute the mangroves' aboveground carbon stock from field measurements. Non-linear regression was used to establish a connection between the NDVI calculated from the Sentinel-2 imagery and the mangroves' aboveground biomass measured in the field, which was subsequently used for aboveground carbon estimation. The results showed that mangroves mapping could derive overall accuracy of 89.09%, where the high-density class existed in 135.12 Ha of total area. It was also discovered that Sentinel-2 imagery could estimate mangroves carbon stock up to 61%. The carbon stock estimation based on the imagery has a value of 16.3992 – 115.134 t C/ha, while that of field survey data ranges from 19.69 to 326.06 t C/ha. These results showed that Sentinel-2B spectral data is functional and has a good chance of being able to predict carbon stock.
 
 Keywords : Carbon; mangroves; NDVI; remote sensing; sentinel-2B
 
 Copyright (c) 2022 Geosfera Indonesia and Department of Geography Education, University of Jember
 This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License
Read full abstract