Two new cyclometalated Ir(III) diimine complexes were used as photosensitizers for homogeneous hydrogen evolution reaction (HER). These complexes were characterized by electrochemistry, ultraviolet-visible absorption, time-resolved and steady-state photoluminescence spectroscopy as well as by theoretical methods. The metal-ligand-to-ligand charge transfer character of their lowest excited state was shown to be competent for efficient H2 photoproduction in the presence of [Co(dmgH)2(py)Cl] as the hydrogen evolution catalyst, triethanolamine as the sacrificial electron donor, and HBF4 as the proton source. Under optimized experimental conditions, both complexes displayed HER over a period of more than 90 h, with turnover numbers reaching up to 11,650, 10,600, and 174 molH2 molPS-1 under blue-, green-, and red-light irradiation, respectively. Both complexes showed higher stability and efficiency vs HER than most of the previously described systems of the same kind.
Read full abstract