The bone of the lumbar vertebrae of 153 dogs was examined 2 and 5 years after intraoperative irradiation (IORT), fractionated external beam irradiation (EBRT), or the combination. Groups of dogs received 15 to 55 Gy IORT only, 10 to 47.5 Gy IORT combined with 50 Gy EBRT in 2 Gy fractions or 60 to 80 Gy EBRT in 30 fractions. Six MeV electrons were used for IORT, and EBRT was done using photons from a 6 MV linear accelerator. The paraaortic region was irradiated and the ventral part of the lumbar vertebrae was in the 90% isodose level. Two years after irradiation, the dose causing significant bone necrosis as determined by at least 50% empty lacunae in the vertebral cortex was 38.2 Gy IORT alone and 32.5 Gy IORT combined with EBRT. Five years after irradiation, the dose causing 50% empty lacunae was 28.5 Gy IORT only and 14.4 Gy IORT combined with EBRT. The ED 50 for lesions of the ventral vertebral artery was 21.7 Gy IORT only and 20.1 Gy IORT combined with 50 Gy EBRT 2 years after irradiation and 27.0 Gy IORT only and 20.0 Gy IORT combined with 50 Gy EBRT 5 years after irradiation. All lesions after EBRT only were mild. Eight dogs developed osteosarcomas 4 to 5 years after irradiation, one at 47.5 Gy IORT only and the remainder at 25.0 Gy IORT and above combined with 50 Gy EBRT. In conclusion, the extent of empty lacunae, indicating bone necrosis, was more severe 5 years after irradiation than after 2 years. The effect of 50 Gy EBRT in 2 Gy fractions was equivalent to about 6 Gy IORT 2 years after irradiation and to about 14 Gy 5 years after irradiation. Based on these estimates, IORT doses of 10 to 15 Gy have an effect 5 times or greater than that amount given in 2 Gy fractions. Osteosarcomas occurred in 21% of dogs which received doses greater than 25 Gy IORT. Doses of 15 to 20 Gy IORT in combination with 50 Gy EBRT in 2 Gy fractions may be near the tolerance level for late developing bone injury.
Read full abstract