Disulfide bond shuffling in the presence of the reducing agents dithiothreitol (DTT) or β-mercaptoethanol (BME) strongly affects the surface properties of lysozyme solutions. The addition of 0.32 mM DTT substantially alters the kinetic dependencies of the dynamic surface elasticity and surface tension relative to those of pure protein solutions. The significant increase in the dynamic surface elasticity likely relates to the cross-linking between lysozyme molecules and the formation of a dense layer of protein globules stabilized by intermolecular disulfide bonds at the liquid/gas interface. This effect differs from the previously described influence of chaotropic denaturants, such as guanidine hydrochloride (GuHCl) and urea, on the surface properties of lysozyme solutions. If both chaotropic and reducing agents are added to protein solutions simultaneously, their effects become superimposed. In the case of mixed lysozyme/GuHCl/DTT solutions, the dynamic surface elasticity near equilibrium decreases as the GuHCl concentration increases because of the gradual loosening of the cross-linked layer of protein globules but remains much higher than that of lysozyme/GuHCl solutions.
Read full abstract