Abstract The changing conditions in which sea ice forms and exists are likely to affect the properties of sea ice itself, and potential climate feedbacks need to be identified and understood to improve future projections. Here we perform a set of idealised laboratory experiments that model sea-ice growth under a range of freezing conditions. The results confirm existing theories; sea-ice growth rate is largest for cooler freezing temperatures, fresher ambient salinities and cases with bottom cooling. Our primary metric of interest is the brine fraction (the volume ratio of brine inclusions to the total sea ice), which we quantify and determine its sensitivity with respect to the ambient salinity, freezing temperature and, for the first time, the freezing direction. We find that the brine fraction of our model sea ice is most sensitive to freezing temperature, and increases 2.5% per 1 $^\circ$ C increase of freezing temperature.
Read full abstract