The crustal imprints from multistage tectonic activities in cratons offer valuable insights into continental evolution. Utilizing seismic data from two densely deployed, nearly perpendicular linear arrays, and a newly developed stepwise joint inversion of depth-domain receiver function and surface wave dispersion, we constructed a detailed crustal layering model for the Yangtze Craton. Our analysis revealed elongated double velocity reversal zones as salient features of the crust, which likely record ancient crustal reworking and juvenile crustal growth associated with Neoproterozoic rift-related magmatic processes. The interlayering of low- and high-velocity structures may contribute to the enduring stability of the Yangtze Craton. Additionally, superimposed layers separated by east-dipping interfaces and abrupt changes in crustal thickness in the boundary belts surrounding the Yangtze Craton document the crust's structural responses to intracontinental deformation during continent assembly.
Read full abstract