The directional transformation of products in the multiphase decomposition process of ammonium perchlorate (AP) still faces significant challenges, one of which is the conversion of greenhouse gas N2O. Furthermore, additional elucidation of the structure and potential catalytic mechanisms of catalysts with high thermal stability is imperative for the aforementioned process. This study proposes a cobalt-based amorphous oxide with high thermal stability for catalysing the thermal decomposition of AP and achieving the transformation of catalytic products from N2O to NO (and its derivatives). The results indicate that the type of catalytic decomposition products is related to the structural transformation of the catalyst, suggesting a synergistic oxidation mechanism by active oxygen and lattice oxygen. The peak decomposition temperature of AP has dropped to near the limit of 257.2 °C, TG-IR test and MD simulation results indicate the selective generation of NO under the lattice oxygen mechanism. In addition, kinetic calculations elucidated the transition of catalysts from amorphous to crystalline state in catalysis. Finally, suggestions were made for the current characterization techniques of catalysts. This study offers a reference point for the catalyst design of AP decomposition-oriented products, which is beneficial for the transition to more environmentally-friendly products.
Read full abstract