The present work demonstrates a pressure-less and reliable joining technique for alumina ceramics through a reaction-bonded aluminum oxide (RBAO) method. Effective joining relies on the RBAO mechanism, in which Al particles are converted to alumina through oxidation and bond with alumina particles from the parts to be joined upon sintering. Alumina ceramics in a green state were successfully joined with the use of an Al/Al2O3 powder mixture as an interlayer. The oxidation behavior of the Al particles was confirmed by thermogravimetry and X-ray diffraction analyses. Joining was performed in ambient air at 1650 °C for 2 h without applying any external pressure. Microstructural observations at the joining interfaces indicated a compact joining. The joining strengths were assessed by determining the biaxial strengths at room temperature, and the joined samples exhibited no fractures at the joining interfaces. Moreover, the joints had a strength of almost 100 % when compared with those of the parent alumina ceramics.
Read full abstract