Vancomycin-resistant Enterococcus faecium (VRE) presents significant challenges in healthcare, particularly for hospitalized and immunocompromised patients, including astronauts with dysregulated immune function. We investigated 42 clinical E. faecium isolates in simulated microgravity (sim. µg) using a 2-D Clinostat, with standard gravity conditions (1 g) as a control. Isolates were tested against 22 antibiotics and characterized for biofilm formation and desiccation tolerance. Results showed varied responses in minimum inhibitory concentration (MIC) values for seven antibiotics after sim. µg exposure. Additionally, 55% of isolates showed a trend of increased biofilm production, and 59% improved desiccation tolerance. This investigation provides initial insights into E. faecium's changes in response to simulated spaceflight, revealing shifts in antibiotic resistance, biofilm formation, and desiccation tolerance. The observed adaptability emphasizes the need to further understand VRE's resilience to microgravity, which is crucial for preventing infections and ensuring crew health on future long-duration space missions.
Read full abstract