For centuries, sheet music scores have been the traditional way to preserve and disseminate Western music works. Nowadays, their content can be encoded in digital formats, making possible to store music score data in digital score libraries (DSL). To supply intelligent services (extracting and analysing relevant information from data), the new generation of DSL has to rely on digital representations of the score content as structured objects apt at being manipulated by high-level operators. In the present paper, we propose the Muster model, a graph-based data model for representing the music content of a digital score, and we discuss the querying of such data through graph pattern queries. We then present a proof-of-concept of this approach, which allows storing graph-based representations of music scores in the Neo4j database, and performing musical pattern searches through graph pattern queries with the Cypher query language. A benchmark study, using (real) datasets stemming from the Neuma Digital Score Library, complements this implementation.
Read full abstract