Fertilizers are widely used to increase agricultural productivity and ensure food security. However, their excessive use negatively impacts the environment, as a large portion is lost through leaching, degradation, and evaporation. Starch-based hydrogels (SHs) offer a promising alternative to mitigate these environmental effects by enabling the controlled release of nutrients. SHs are biodegradable, non-toxic, and biocompatible, making them attractive for agricultural applications such as soil remediation and fertilizer delivery. These materials consist of crosslinked, three-dimensional networks with high water absorption capacity. Their effectiveness in nutrient delivery depends on the synthesis method, nutrient source, and environmental conditions. While the literature on SHs is growing, most studies focus on laboratory-scale production, which limits their broader application in agriculture. This review aims to consolidate current knowledge on SHs and identify research gaps to guide the development of more efficient and environmentally friendly SH-based fertilizers. It provides an overview of SH formation methods, including graft copolymerization, chemical crosslinking, and physical interactions. Additionally, the review highlights SH applications in controlled fertilizer release, discussing encapsulation capacity, large-scale production techniques, and nutrient delivery in aqueous media, soils, seeds, and plants.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
11085 Articles
Published in last 50 years
Articles published on Graft Copolymers
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
11604 Search results
Sort by Recency