We answered two major questions: (1) does retrograde signaling involve retrograde transport of nerve growth factor (NGF); and (2) is a gradient of immobilized NGF sufficient to promote and guide local axonal growth? To answer these questions, we developed a technique that resulted in stably immobilized NGF and combined this with compartmented chambers. NGF was photochemically-immobilized on a chitosan surface either in the cell body (CB) compartment, distal axon (DA) compartment, or both. Neuron survival and axon outgrowth were found to be insignificantly different from positive controls where soluble NGF was present. When NGF was immobilized on chitosan surfaces in the DA compartment, and in the absence of soluble NGF, neuron survival was observed, likely due to the retrograde signal of the activated TrkA receptor and NGF-induced signals, but not the retrograde signal of NGF itself. Axons were guided towards the higher end of the step concentration gradient of NGF that was photoimmobilized on the chitosan surface in the DA compartment by laser confocal patterning, demonstrating axonal guidance. These studies provide better insight into NGF signaling mechanisms which are important to both understanding developmental disorders and degenerative diseases of the nervous system, as well as improving design strategies to promote nerve regeneration after injury.
Read full abstract