We present the design, fabrication, and characterization of a highly nonlinear few-mode fiber (HNL-FMF) with an intermodal nonlinear coefficient of 2.8 (W·km)−1, which to the best of our knowledge is the highest reported to date. The graded-index circular core fiber supports two mode groups (MGs) with six eigenmodes and is highly doped with germanium. This breaks the mode degeneracy within the higher-order MG, leading to different group velocities among corresponding eigenmodes. Thus, the HNL-FMF can support multiple intermodal four-wave mixing processes between the two MGs at the same time. In a proof-of-concept experiment, we demonstrate simultaneous intermodal wavelength conversions among three eigenmodes of the HNL-FMF over the C band.
Read full abstract