Inner Mongolia, a major region in China for growing sugar beet, faces challenges caused by unscientific water and fertilizer management. This mismanagement restricts the improvement of sugar beet yield and quality and exacerbates water waste and environmental pollution. This study aims to evaluate the effects of reduced water and fertilizer on the growth and physiological metabolism of sugar beet taproot. Field experiments were conducted in Ulanqab, Inner Mongolia, in 2022 and 2023, using a split-plot design with three levels each of fertilization and irrigation. The study analyzed the effects of reduced water and fertilizer treatments on fresh taproot weight, respiration rate, energy metabolism, respiratory enzyme activity, and gene expression in sugar beet taproot. It was found that a 10% reduction in fertilizer significantly increased the beet taproot fresh weight. Further research revealed that during the rapid leaf growth phase and the taproot and sugar growth period, a 10% reduction in fertilizer upregulated HK and IDH gene expression and downregulated G6PDH gene expression in the beet taproot. This increased HK and IDH activities, decreased G6PDH activity, enhanced the activity of the EMP-TCA pathway, and inhibited the PPP. Taproot weight was positively correlated with the respiration rate, ATP content, EC, and ATPase, HK, and IDH activities, thereby increasing the taproot growth rate and taproot fresh weight, with an average increase of 4.0% over two years. These findings introduce a novel method for optimizing fertilizer use, particularly beneficial in water-scarce regions. Implementing this strategy could help farmers in western Inner Mongolia and similar areas improve crop yield and sustainability. This study offers new insights into resource-efficient agricultural practices, highlighting the importance of customized fertilization strategies tailored to local environmental conditions.
Read full abstract