Enfuvirtide (ENF), a novel human immunodeficiency virus type 1 (HIV-1) fusion inhibitor, has potent antiviral activity against HIV-1 both in vitro and in vivo. Resistance to ENF observed after in vitro passaging was associated with changes in a three-amino-acid (aa) motif, GIV, at positions 36 to 38 of gp41. Patients with ongoing viral replication while receiving ENF during clinical trials acquired substitutions within gp41 aa 36 to 45 in the first heptad repeat (HR-1) of gp41 in both population-based plasma virus sequences and proviral DNA sequences from isolates showing reduced susceptibilities to ENF. To investigate their impact on ENF susceptibility, substitutions were introduced into a modified pNL4-3 strain by site-directed mutagenesis, and the susceptibilities of mutant viruses and patient-derived isolates to ENF were tested. In general, susceptibility decreases for single substitutions were lower than those for double substitutions, and the levels of ENF resistance seen for clinical isolates were higher than those observed for the site-directed mutant viruses. The mechanism of ENF resistance was explored for a subset of the substitutions by expressing them in the context of a maltose binding protein chimera containing a portion of the gp41 ectodomain and measuring their binding affinity to fluorescein-labeled ENF. Changes in binding affinity for the mutant gp41 fusion proteins correlated with the ENF susceptibilities of viruses containing the same substitutions. The combined results support the key role of gp41 aa 36 to 45 in the development of resistance to ENF and illustrate that additional envelope regions contribute to the ENF susceptibility of fusion inhibitor-naïve viruses and resistance to ENF.
Read full abstract