Gold is a yellow precious metal that can be forged so it is easy to form with various forms of jewelry such as pendants, earrings, rings, bracelets and others, gold has a high value. Gold itself is an exchange rate used in ancient times before the existence of money as it is today. Gold also can be used as an investment that is profitable for the investor and it has less risks. Investment is a form of fund management to give benefit by putting fund in allocation that is predicted will give additional benetifs. Prediction of gold price movements or predictions of gold price in gold stock investment, this research uses 3 (three) algorithms that will be implemented in analysis and increase accuracy, in the discussion or research that was made using the Naïve Bayes algorithm, Support Vector Machine and K-Nearest Neighbor, the dataset is obtained from the website, namely www.finance.yahoo.com the data was then tested using Rapid miner tools so that the average value of the Support Vector Machine algorithm with an accuracy rate of 57.59%, precision 58 ,73% and recall 51,78%. The next is the Naïve Bayes algorithm so that it is known to have an accuracy rate of 55.59%, precision 54.55% and recall 51.70%. Based on the comparison of the three algorithms, it is known that the one with the best accuracy, precision, and recall is the K-NN algorithm with 61.90% accuracy, 60.98% precision, and 60.35% recall. Furthermore, the results of testing the K-Nearst Neighbor algorithm have good results compared to the 3 (three) other algorithm tests and the Naïve Bayes algorithm testing has a low level of accuracy, namely 55.59%, precision 54.55% and recall 51.70%. The research uses 3 algorithms, namely naive bayes, K-nearst neighbor and Support Vector Machine, because the three algorithms are well-established algorithms to be applied to research, especially in time series gold price research and are very good, especially for classification
Read full abstract