Hospitalized patients often develop acute renal failure (ARF), which causes severe morbidity and death. This research investigates the potential renoprotective benefits of sildenafil and furosemide in glycerol-induced ARF, and measures kidney function metrics in response to nanoparticle versions of these medications. Inducing ARF is commonly done by injecting 50% glycerol intramuscularly. Rats underwent a 24-h period of dehydration and starvation before slaughter for renal function testing. We investigated urine analysis, markers of oxidative stress, histology of kidney tissue, immunohistochemistry analysis of caspase-3 and interleukin-1 beta (IL-1 β), kidney injury molecule-1 (KIM-1), and neutrophil gelatinase–associated lipocalin (NGAL), which are specific indicators of kidney tissue damage. The results of our study showed that the combination of sildenafil and furosemide, using both traditional and nanoparticle formulations, had a greater protective effect on the kidneys compared to using either drug alone. The recovery of renal tissue indicators, serum markers, and urine markers, which are indicative of organ damage, provides evidence of improvement. This was also indicated by the reduction in KIM-1 and NGAL tubular expression. The immunohistochemistry tests showed that the combination therapy, especially with the nanoforms, greatly improved the damaged cellular changes in the kidneys, as shown by higher levels of caspase-3 and IL-1β. According to the findings, a glycerol-induced rat model demonstrates that sildenafil and furosemide, either alone or in combination, in conventional or nanoparticulate forms, improve ARF dysfunction. The synergistic nanoparticulate compositions show remarkable effectiveness. This observation highlights the possible therapeutic implications for ARF treatment.
Read full abstract