In this study, we proposed a novel method utilizing polyethyleneimine (PEI)-modified halloysite nanotubes (HNTs)-based hybrid silica monolithic spin tip to analyze hydrophilic β-lactam antibiotics and β-lactamases inhibitors in whole blood samples for the first time. HNTs were incorporated directly into the hybrid silica monolith via a sol-gel method, which improved the hydrophilicity of the matrix. The as-prepared monolith was further modified with PEI by glutaraldehyde coupling reaction. It was found that the PEI-modified HNTs-based hybrid silica monolith enabled a large adsorption capacity of cefoperazone at 35.7 mg g−1. The monolithic spin tip-based purification method greatly reduced the matrix effect of whole blood samples and had a detection limit as low as 0.1 − 0.2 ng mL−1. In addition, the spiked recoveries of sulbactam, cefuroxime, and cefoperazone in blank whole blood were in the range of 89.3–105.4 % for intra-day and 90.6–103.5 % for inter-day, with low relative standard deviations of 1.3–7.2 % and 4.9–10.5 %, respectively. This study introduces a new strategy for preparing nanoparticles incorporated in a hybrid silica monolith with a high adsorption capacity. Moreover, it offers a valuable tool to monitor sulbactam, cefoperazone, and cefuroxime in whole blood from pregnant women with the final aim of guiding their administration.
Read full abstract