Global warming intensifies extreme heat events, threatening crop reproduction by impairing pollen development, germination, and tube growth. However, the mechanisms underlying pollen heat responses remain elusive. The actin cytoskeleton and actin-binding proteins (ABPs) are crucial in these processes, yet their roles under heat stress are poorly understood. Here, we identify a mutant, pollen germination sensitive to LatB (pgsl1), via forward genetic screening. PGSL1 encodes a heat-stable, plant-specific ABP that binds and stabilizes actin filaments (F-actin), preventing heat-induced denaturation. High temperatures reduce F-actin content but promote bundling in pollen tubes. Notably, pgsl1 mutants exhibit decreased F-actin abundance and bundling under heat stress compared to wild-type plants. These findings highlight PGSL1 as a key regulator of actin dynamics, essential for pollen heat tolerance, offering potential strategies to enhance crop resilience in a warming climate.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
70714 Articles
Published in last 50 years
Articles published on Global Warming
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
65904 Search results
Sort by Recency