On the basis of global structure search and density functional theory calculations, we predict a new class of two-dimensional (2D) materials, titanium silicide (Ti2Si, TiSi2, and TiSi4) monolayers. They are proved to be energetically, dynamically, and thermally stable and own excellent mechanical properties. Among them, Ti2Si is a ferromagnetic metal with a magnetic moment of 1.37 μB/cell, while TiSi2 is an ideal catalyst for the hydrogen evolution reaction with a nearly zero free energy of hydrogen adsorption. More importantly, electron-phonon coupling calculations suggest that TiSi4 is a robust 2D phonon-mediated superconductor with a transition temperature of 5.8 K, and the transition temperature can be enhanced up to 11.7 K under a suitable external strain. The versatility makes titanium silicide monolayers promising candidates for spintronic materials, hydrogen evolution catalysts, and 2D superconductors.
Read full abstract